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Conclusion

● The photographs are naturally degraded by optical aberration artifacts.
● Existing solutions (e.g., DxO PhotoLab) are non-blind: based on tedious 

calibration.
● We propose a fast blind method: give the image and press the button!

● Optical aberration correction usually happens in the ISP pipeline, after denoising 
and demosaicking.

● After analysis of the aberration, we decompose them into blur and warp.
● We address these two issues in two separate steps:

○ Blind Gaussian deblurring: we remove simple small parametric blurs.
○ Edge correction: we correct the remaining red and blue shifted edges.

● We show from 273K calibrated local 
PSFs [Bauer et al., ICCP’18] the blurs 
may be approximated with Gaussian 
blurs [Kee et al., ICCP’11].

● The standard deviation is mainly 
smaller than 4 and the orientations are 
the same across the colors.

● The monochromatic blurs may be 
removed by a blind Gaussian 
deblurrer.

● We use Polyblur [Delbracio et al. 
TCI’21].

● The chromatic aberrations result in color fringes next to the salient edges.
● According to [Cheng et al., TIP’13] the red-green and blue-green color residuals are 

good detectors of the chromatic aberrations.
● Therefore, after deblurring, we correct the chromatic aberrations.
● We propose a CNN and a training loss tailored to correct color fringes.
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CNN architecture

● We design a residual CNN.
● It takes as input two color channels.
● We take the green image as the 

reference and restore the red and blue 
channels.

● It predicts a red or blue residual to be 
subtracted to the red or blue input 
channel.

Training loss

● A typical training loss compares the pixel colors of the images.
● We instead minimize the color residuals of the prediction and the target to favor 

achromatic edges.

● We trained two networks: with the typical image difference loss and our proposed 
residual difference loss.

● Predictions with the typical approach: the images show color tints next to the edges.
● Predictions with our approach: the images have salient edges that are much more 

achromatic.
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● Comparison with SOTA optimization and 
CNN optical aberration removal 
methods.

● We do much better while being faster 
than [Li et al., ICCV’21] by order of 
magnitudes.

● In particular, we get rid of all the chromatic aberrations thanks to our edge filtering 
formulation.

● Limitations: we do not perfectly restore purple fringes (optical aberration + 
saturation) and blurs not captured by Gaussian blurs.

● We have presented a fast two-stage blind approach to optical 
aberration removal.

● We decompose the problem into blind Gaussian deblurring and 
defringing.

● We are much faster than the SOTA while being more accurate.
● Moving from the Gaussian blur model is left to future work.

● We valide the Gaussian blur assumption 
for local PSF correction.

● We compare our approach to parametric 
[Kee et al., ICCP’11] and non-parametric 
[Anger et al., IPOL’19] blind deblurring.

● We achieve similar results to Anger et 
al.’s and GT kernel inversions.

● We are much faster than Anger et al. 
while being as accurate.
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